NACH OBEN

Cavitation, cavitation erosion and bubble dynamics

Cavitation, due to its typically harmful effects (erosion, collapse of delivery, strong pressure fluctuations, noise), is an important yet inadequately understood phenomenon. In modeling cavitating flows, on one hand, bubble dynamic models are used that consider individual bubbles or clusters of interacting single bubbles based on the Rayleigh-Plesset equation. On the other hand, CFD methods are employed that assume a homogeneous mixture in each cell and are either linked to a thermodynamic model (compressible processes, thermodynamic equilibrium) or a simplified bubble dynamic cavitation model (volume fraction transport equation with source/sink term based on, for example, the Rayleigh equation). With sufficient spatial resolution, CFD methods are increasingly used for the detailed 3D representation of individual bubbles. The phase boundary and mass and heat transfer can be modeled in equilibrium or non-equilibrium.

In the development of CFD methods for cavitating flows, at HSM, compressible methods are further developed that accurately depict the dynamics of pressure waves, as only these methods can precisely predict erosion. Compressible methods are used in conjunction with an equation of state. Current developments aim to extend compressible methods to include bubble dynamics, as used in a simplified form (e.g., based on the Rayleigh equation) to determine the source and sink terms of volume fraction transport equations. Due to the high temporal and spatial resolution and the enormous computational effort, efficient, for example, implicit computational methods are being developed that allow the application of new cavitation models to real flows in hydraulic machines with sufficient accuracy. Another focus is on the scarcely researched area of cavitation in complex fluids, such as practically relevant fluid mixtures like fuels and hydraulic oils, which can behave quite differently from water.

Current Projects

Numerische Simulation der Strömungsdynamik und -aggressivität bei hydroakustischer Kavitation an Sonotroden.

Fluid- und Fertigungseinfluss auf Kavitation

  • Financing: AiF-IGF.
  • Partner:
    • TU Darmstadt, Inst. f. Fluidsystemtechnik (Prof. Pelz),
    • VDMA Fachverband Pumpen und Systeme.
  • Contact: Zhenhui Liu

Closed Projects

Numerische Vorhersage von Kavitationserosion in Pumpen.

  • Financing: AiF-IGF.
  • Partner:
    • TU Darmstadt, Inst. f. Fluidsystemtechnik (Prof. Pelz),
    • VDMA Fachverband Pumpen und Systeme.
  • Contact: Magnus Haese
  • Final report

Mehrkomponenten-Kavitationsmodellierung zur numerischen Strömungssimulation realer Fluidgemische in hydraulischen Systemen.

Numerische Vorhersage des zeitlichen Verlaufs kavitationsbedingter Erosionsschäden an Schiffspropulsions- und –manövrierorganen: Kav4D.

  • Financing: BMWi.
  • Partner:
    • Univ. Duisburg-Essen, Inst. f. Schiffstechnik, Meerestechnik und Transportsysteme (Prof. el Moctar),
    • J.M. Voith SE & Co. KG,
    • Mecklenburger Metallguss GmbH – MMG.
  • Contact: Romuald Skoda

Vorhersage von Kavitationserosion in Dieselinjektoren für Schiffsmotoren.

  • Financing: Industrie.
  • Partner: MAN Energy Solutions.
  • Contact: Romuald Skoda

3D Simulation der akustischen Kavitation und der Kavitationserosion in Sonotroden.

  • Financing: NRW.
  • Partner: RUB, Lst. f. Werkstofftechnik (Prof. Theisen).
  • Contact: Romuald Skoda

Einzelblasenmodellierung mit Luftausgasung.

Einfluss der thermophysikalischen Eigenschaften von Fluidgemischen auf Kavitation und Kavitationserosion.

Entwicklung von CFD-Verfahren für die Simulation kavitierender Strömungen in hydraulischen Strömungsmaschinen.

Einfluss des gelösten Luftgehaltes auf die Zwangsentgasung bei der Kavitation.

  • Financing: NRW.
  • Partner: RUB, Lst. f. Feststoffverfahrenstechnik (Prof. Petermann).
  • Contact: Romuald Skoda
Cavitating flow around a hydrofoil at σ = 2.5
Lupe
Cavitating flow around a hydrofoil at σ = 2.5

Cavitation erosion on a sonotrode head: Comparison of experiment & simulation
Lupe
Cavitation erosion on a sonotrode head: Comparison of experiment & simulation

Pressure wave propagation (contour plot) and vapor cloud structure (iso-surfaces) in a gap between sonotrode head and counter sample in a sectional view
Lupe
Pressure wave propagation (contour plot) and vapor cloud structure (iso-surfaces) in a gap between sonotrode head and counter sample in a sectional view

Transmitted light images of the cavitation flow below an ultrasonic horn in water. Left: raw image; Right: marked bubble centers
Lupe
Transmitted light images of the cavitation flow below an ultrasonic horn in water. Left: raw image; Right: marked bubble centers